Agricultural Adaptation Practices in South Asia :

Experience of Farmers in Sri Lanka

Athula Senaratne, Research Fellow Institute of Policy Studies Sri Lanka

Outline

- Climate change and farmers
- Climate and agriculture in Sri Lanka
- Overview of agricultural adaptations
- Village tanks: Historical structural adaptation
- Agro-wells: Adjusting to climate and market
- Indigenous varieties & traditional practices: Building resilience
- Some lessons

• Climate & farmers

- Climate : A matter of uncertainty in all circumstances
- Farmers : Regularly witness climate uncertainty; Inherently adaptive
- Forms of climate uncertainty
 - Climatic variability : Natural; Familiar to farmers
 - Climate change : Human induced; Currently experienced?

- Climate uncertainty & South Asia
 - South Asia: Poorer communities in SA are highly vulnerable
 - Majority of poor occupied in agricultural livelihoods
 - Rain-fed and irrigated farmers
 - Rain-fed & Irrigated
 - Rain-fed : Naturally more vulnerable to climate uncertainty
 - Usually more affected by poverty
- There are other shocks
 - Globalization: Major force of transformation of agriculture in SA
 - Globalization and climate change: Simultaneous, double exposure (Coles and Scott, 2009; O'brien and Leichenko, 2000)
 - Impacts on traditional system
 - Local institutions : Private vs. Common property resources
 - Traditional knowledge : Decline of traditional knowledge

- Adaptation decisions of farmers
 - Perceptions and expectations play a major role (Hansen et al., 2004; Marx et al., 2007)
 - Cognitive limitations & biases (Nocholls, 1999; Tucker, 2007; Weber, 2010)

Farmers are guided by shared beliefs

• Strong empirical evidence (Roncoli et al., 2002; Lybbert et al., 2007; Orlove et al., 2007)

First Inter-Monsoon (FIM)

March & April

Southwest Monsoon (SWM)

May – September

Second Inter-Monsoon (SIM)

October & November

Northeast Monsoon (NEM)

December – February

net supply = rainfall - evaporation

Cropping calendar based on two seasons

Normal expectations about seasonality

Period	Local Name for the Season	Months of High Rainfall	Months of Low Rainfall
mid-September to mid- March	Maha	mid-October to mid- January	mid-September to mid- October; mid-January to mid-March
mid- March to mid-September	Yala	late-March to mid-May	mid-May to mid- September

Normal expectations about Intrapersonal variability

- Sequence of chronologically ordered events
- Local terminology: Intensity, purpose

- Several studies based on historical weather data:
 - Chandrapala (1996); Costa (2008); Eriyagama et al.(2010); Jayawardena et al. (2005)
- Air temperature has been rising all over the country during the last century
- Warming trend has accelerated during the recent decades
 - Global warming could be one reason
 - Other local effects also: Urbanization, deforestation, other land use changes etc.
- Negative deviation in average annual RF since 1970s
 - Change is mainly in NEM and FIM. Negligible in SWM & SIM
- Increased occurrence of droughts, floods etc.

Adaptation: A complex behavioral phenomenon

Adjustment of behavior in response to actual or expected variability or change in climate in order to moderate and cope with harmful impacts or to take advantage of opportunities

Essentially a risky choice

Overview of agricultural adaptations

Time horizons of decisions	Types of decisions	Types of adjustments
Short-term	Tactical	Seasonal adjustments (e.g. dry sowing; selection of varieties; time of harvesting)
Medium-term	Strategic	Time horizons of one to few years (e.g. Adjustments of portfolio of crops; selection of resilient varieties; new agronomic practices)
Long-term	Structural	Time horizons of decades or more (Community managed village tanks; agro-wells)

- Village tank systems in dry zone Sri Lanka
 - Village tanks: Community-owned rain water harvesting devices (5-80 ha water spread area)
 - Man-made structures. Many are several centuries old
 - Around 18,000 tanks

Institutional framework

- Historically developed and adapted system of common property resources managed by farmers themselves
- Interventions by state during colonial and post-independence era
- At present: Legally sanctioned co-management arrangement
 - Agrarian Development Act 2000
 - Farmer Organizations: Legally recognized local institution
 - Agrarian Development Department: Facilitative role

- Long history of adaptation to climatic variability
 - Traditional farming system: gradually evolved to accommodate changes (Panabokke et al., 2002; Tennakoon, 2001)

Farming system activity	Crops	Seasonality		Water supply		Location	Economic
		Maha	Yala	Maha	Yala		status
Lowland farming	Paddy	All plots in the field	Limited area	Rain- fed + tank water	Tank water	Command area of village tanks. Bethma in <i>Yala</i>	Manly subsistence with limited sales if a surplus available
Upland farming	Coarse grains, Grain legumes, Pulses, Vegetables, condiments, Gingelly	1-5 ac avg. by all HH	Gingelly	Fully rain-fed	Fully Rain- fed	Shifting agriculture in commonly owned uplands	Mainly subsistence with few cash crops
Permanent crops	Coconut, fruits, multi purpose trees	No seasonality		Rain-fed + retained moisture in soil		Home gardens	Mainly subsistence with few cash crops

Paddy cultivation in the dry season

- Rice is the staple diet and critical for food security
- Water in tanks is not adequate for entire command area
- Location of private fields: Cannot ensure water for all

'Bethma' (division) : Joint adaptation

- Farmers jointly decide the area cultivable under water remaining in tanks
- Individual rights for this area are temporarily suppressed
- Cultivable area is divided proportionately among all land holders for paddy growing

Agro-wells: Adjusting to climate and market

Agro-wells: Adjusting to climate and market

Yala' (dry) season: Mid May-Sept

- High likelihood of low RF (variability is low)
- Successful outcomes from timing of prospects are limited

Agro-wells: Prospect for using shallow aquifer

- Cultivation of weather sensitive cash crops under agrowells
 - Chilli, onion and vegetables
 - Susceptible to disease and drainage in rainy season. Shifted from 'Maha' to 'Yala' with ground water option
- In the past : Cultivation of paddy in a limited area subject to water level in tanks (joint adaptation)

Indigenous varieties & traditional practices: Building resilience

Green revolution: Fast tracked the agriculture in SL

- New improved varieties (NIVs): Short maturation, high yielding, high chemical input intensive
- GR technology package: High use of chemical inputs and machinery
- **Government policies**: Expansion of irrigation facilities and input subsidies (e.g. fertilizer subsidies)

Indigenous varieties and traditional agricultural practices

- Practiced by small minority of farmers
- Interest is rising: Facilitated by demand for organic products
- Fiercely campaigned by environmental lobby groups

Indigenous varieties & traditional practices: Building resilience

Green revolution: Fast tracked the agriculture in SL

- New improved varieties (NIVs): Short maturation, high yielding, high chemical input intensive
- GR technology package: High use of chemical inputs and machinery
- **Government policies**: Expansion of irrigation facilities and input subsidies (e.g. fertilizer subsidies)

Indigenous varieties and traditional agricultural practices

- Practiced by small minority of farmers
- Interest is rising: Facilitated by demand for organic products
- Fiercely campaigned by environmental lobby groups

Indigenous varieties & traditional practices: Building resilience

Indigenous varieties (IV):

- Some IVs are resilient to hazards (e.g. droughts, floods)
- Capable of surviving until the field conditions are favorable
- Possess morphological features that facilitate survival under stress conditions

Traditional agricultural practices

- IVs cannot be taken in isolation. Have to be taken together with traditional practices
- Numerous practices: Some are widely practiced (e.g. dry sowing techniques)
- Help to increase the endurance of seeds and plants

Some Lessons

Better to identify as broad strategies than individual practices

• Strategies: Selection of broad range of activities

Adaptation includes individual and collective actions

Changing socio-economic conditions favor private adaptations

Local institutions have a key role to play

- Especially in joint adaptation
- Determining the boundary between private and collective adaptation is difficult

Local knowledge are an essential part of the solution

• IVs and traditional practices combined together

Thank You!

